Research Projects

SOL2HY2

Solar To Hydrogen Hybrid Cycles

Sector

Energy

Product/Objective

To demonstrate that hydrogen "green" production is possible through the exploitation of solar power.

Project Summary

The FCH JU strategy has identified hydrogen production by water decomposition pathways powered by renewables such as solar energy to be a major component for sustainable and carbon-free hydrogen supply. Solar-powered thermo-chemical cycles are capable to directly transfer concentrated sunlight into chemical energy by a series of chemical and electrochemical reactions, and of these cycles, hybrid-sulphur (HyS) cycle was identified as the most promising one.The challenges in HyS remain mostly in dealing with materials (electrolyser, concentrator, acid decomposer/cracker and plant components) and with the whole process flowsheet optimization, tailored to specific solar input and plant site location. With recent technology level at large-scale hydrogen production concepts hydrogen costs are unlikely to go below 3.0-3.5 €/kg. For smaller scale plant, the costs of hydrogen might be substantially higher.

Innovation

The project focuses on applied, bottle-necks solving, materials research and development and demonstration of the relevant-scale key components of the solar-powered, CO2-free hybrid water splitting cycles, complemented by their advanced modeling and process simulation including conditions and site-specific technical-economical assessment optimization, quantification and benchmarking. For the short-term integration of solar-power sources with new Outotec Open Cycle will be performed. Simplified structure, extra revenues from acid sales and highly efficient co-use of the existing plants may drop hydrogen costs by about 50-75% vs. traditional process designs.

ES Role

EnginSoft will provide MODAO tools and metamodelling methods in order to simulate the full process performances, including elaboration of DoE strategy, data mining and optimisation. EnginSoft will also help SME and R&D performers in modelling issues, simulation of the relevant processes and elaboration of the models. EnginSoft has also the coordination of the project.

Partners

EnginSoft S.p.A., Italy | Aalto University Foundation, Finland | DLR - German Aerospace Authority, Germany | ENEA - Agenzia per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Italy | Outotec Corp., Finland | Erbicol S.A., Switzerland | Oy Woikoski AB, Finland.

Funding Scheme

Funding Scheme Collaborative Project | Call identifier FCH-JU-2012-1, SP1-JTI-FCH.2012.2.5: Thermo-electricalchemical processes with solar heat sources

SOL2HY2

Project web site

Visit the website

Duration

36 months

Period

June 2013 – May 2016

Coordinator

EnginSoft Spa

Reference in EnginSoft

Stefano Odorizzi, Carla Baldasso

Partners Number

7

Ask the Expert

Contact us!

Contact our R&D team for any information.

Ask for information

Find out more

Some of our competences in research and technology transfer

Research project

REM

Recover of Energy from fluid Mechanics for internet of things and remote sensing

Recovery of Mechanical Energy from fluids to feed and Internet of Things (IoT) node that monitors diesel-engine exhaust gases.

Research project

INFOS

INternationalisation of Veneto FOundry by networked Strategies

The project supports some of the companies within the SINFONET network in using high value services, assistance, orientation, coaching, information, and export promotion to promote not only their individual companies but also the overall foundry supply chain.

Research project

DigiPrime

Digital Platform for Circular Economy in Cross-sectorial Sustainable Value Networks

DigiPrime will create and operate a federated model of digital platforms by developing reliable data sharing mechanisms and preserving the confidentiality of business-critical data, governed by smart contracts and using block-chain tracking.